Discovery of underground reservoir of argon with low level of ³⁹Ar

TAUP 2007 - Sendai - September 11 2007 Cristiano Galbiati, on behalf of ...

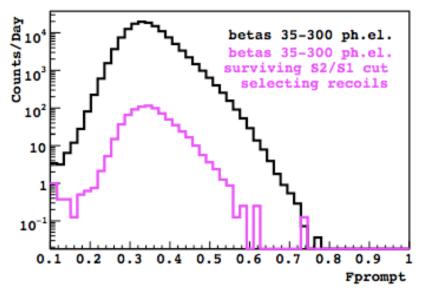
Discovery of underground argon with low level of radioactive ³⁹Ar and possible applications to WIMP dark matter detectors

D. Acosta-Kane,¹ R. Acciarri,² O. Amaize,¹ M. Antonello,² B. Baibussinov,³ M. Baldo Ceolin,³ C. J. Ballentine,⁴ R. Bansal,⁵ L. Basgall,⁶ A. Bazarko,⁷ P. Benetti,⁸ J. Benziger,⁹ A. Burgers,¹ F. Calaprice,¹ E. Calligarich,⁸ M. Cambiaghi,⁸ N. Canci,² F. Carbonara,¹⁰ M. Cassidy,¹¹ F. Cavanna,² S. Centro,³ A. Chavarria,¹ D. Cheng,¹ A. G. Cocco,¹⁰ P. Collon,¹² F. Dalnoki-Veress,¹ E. de Haas,¹ F. Di Pompeo,² G. Fiorillo,¹⁰ F. Fitch,¹³ V. Gallo,¹⁰ C. Galbiati,^{1,*} M. Gaull,¹ S. Gazzana,¹⁴ L. Grandi,¹⁴ A. Goretti,¹ R. Highfill,⁶ T. Highfill,⁶ T. Hohman,¹ Al. Ianni,¹⁴ An. Ianni,¹ A. LaCava,¹⁵ M. Laubenstein,¹⁴ H. Y. Lee,¹⁶ M. Leung,¹ B. Loer,¹ H. H. Loosli,¹⁷ B. Lyons,¹ D. Marks,¹ K. McCarty,¹ G. Meng,³ C. Montanari,⁸ S. Mukhopadhyay,¹⁸ A. Nelson,¹ O. Palamara,¹⁴ L. Pandola,¹⁴ R. C. Pardo,¹⁶ F. Pietropaolo,³ T. Pivonka,⁶ A. Pocar,¹⁹ R. Purtschert,^{17,†} A. Rappoldi,⁸ G. Raselli,⁸ K. E. Rehm,¹⁶ F. Resnati,²⁰ D. Robertson,¹² M. Roncadelli,⁸ M. Rossella,⁸ C. Rubbia,¹⁴ J. Ruderman,¹ R. Saldanha,¹ C. Schmitt,¹² R. Scott,¹⁶ E. Segreto,¹⁴ A. Shirley,²¹ A. M. Szelc,^{22,2} R. Tartaglia,¹⁴ T. Tesileanu,¹ S. Ventura,³ C. Vignoli,⁸ C. Visnjic,¹ R. Vondrasek,¹⁶ and A. Yushkov¹⁴ ¹Department of Physics, Princeton University, Princeton, NJ 08544, USA ²INFN and Dipartimento di Fisica, University of L'Aquila, L'Aquila 67100, Italy

Outline

- Part of research program funded by NSF
- Motivation for exploration of underground argon
- Status and development of analytical techniques
- Sample collection and preparation
- Discovery of first source with low level of ³⁹Ar
- Next step: massive collection of low background argon for large WIMP detector

Argon as target for WIMP detection


- Liquid argon excellent material for WIMP and neutrino detection:
 - Copious scintillation
 - Excellent target for ionization detector
 - Best beta/recoil discrimination among energy-sensitive detectors. See next slide with last WARP records
- Large-scale argon WIMP detectors under development
- WARP 3.2-kg delivered first Ar-limit on WIMP detection (2006)
- WARP 140-kg operating next year at LNGS

Recent WARP Results on Discrimination

(a)Betas vs. Neutrons vs. Alphas

(b)Betas vs. S2/S1 Cut Selecting Neutrons

After recent electronics upgrade, pulse shape discrimination between m.i.p. and nuclear recoils better than 3×10^{-7} for > 35 photoelectrons, better than 10^8 for > 50 photoelectrons Shape of distribution does not change by applying S2/S1 cut (reduction 5×10^2).

Two discriminations independent within statistics collected.

Why is underground argon desirable?

- Radioactive ³⁹Ar produced by cosmic rays in atmosphere
 - decays betas, Q = 565 keV, $t_{1/2}$ = 269 years
- In atmospheric argon:
 - ³⁹Ar/Ar ratio 8×10⁻¹⁶
 - specific activity I Bq/kq
- Limits size and sensitivity of argon detectors

Why is underground argon desirable?

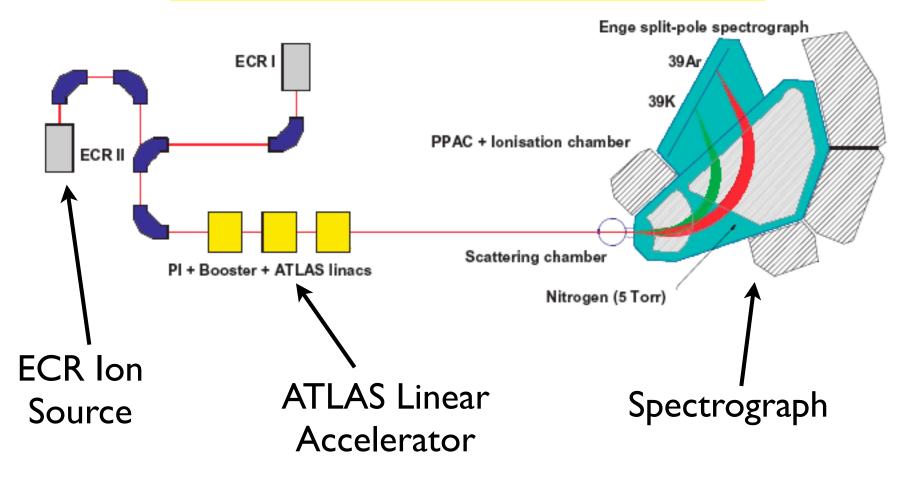
- ³⁹Ar-depleted argon available via centrifugation or thermal diffusion, but expensive at the ton scale!
- ³⁹Ar production by cosmic rays strongly suppressed underground
- Shielding of hydrocarbons in deep underground reservoirs results in low cosmogenic ¹⁴C, important for solar neutrino detection
 - Borexino just reported measurement of solar ⁷Be neutrinos
 - Background from ¹⁴C defeated through use of scintillator from petrochemicals
 - In petrochemicals ¹⁴C/C~10⁻¹⁸, six orders of magnitude lower than in atmospheric carbon (¹⁴C/C~10⁻¹²)

Necessary to pre-scan sources of interest for ³⁹Ar

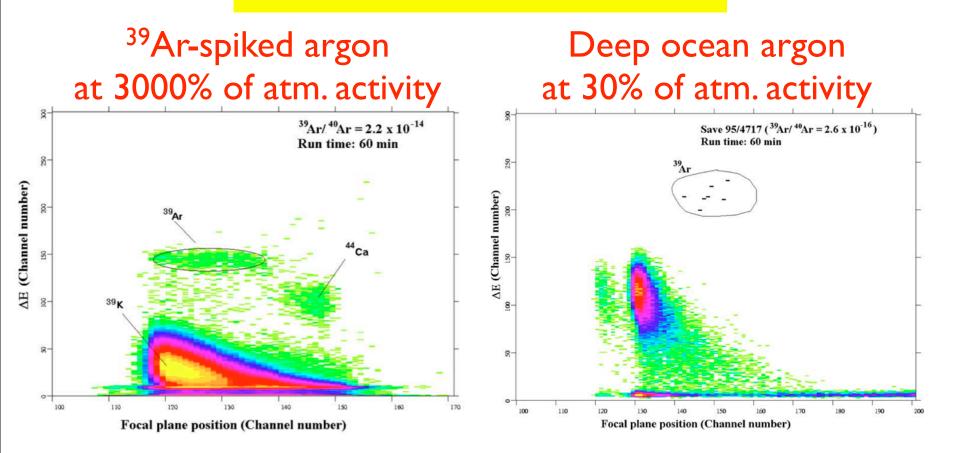
- ³⁹Ar also produced underground by neutron activation, from fission and (α,n) neutrons
 - ³⁹K(n,p)³⁹Ar
- ³⁹Ar content depends on local content of U, Th, and K, and on rock porosity
- In some groundwater samples ³⁹Ar/Ar ratio measured up to a factor 20× (2000%) of the atmospheric ratio
- Cannot rely on ³⁹Ar simply being low. Pre-scan of ³⁹Ar activity on small samples necessary for program.

Analytical techniques to measure ³⁹Ar

- Three main techniques:
 - Counting of argon gas in low-background proportional detectors
 - Accelerator Mass Spectrometry (AMS)
 - Counting of argon in low-background liquid-phase detectors


Counting of argon gas in lowbackground proportional counters

- First established (Loosli 1969) and still today standard method for ³⁹Ar determination
 - Collaborators Loosli and Purtschert run in Bern underground Lab dedicated facility for ³⁹Ar measurements since 1969
- Small samples (1-2 liters STP) of argon and limited depth (100 m.w.e.) required to measure ³⁹Ar at or below atmospheric level
- ³⁹Ar sensitivity limited by detector background. Detector background must be carefully characterized by measurement with reference argon gas depleted in ³⁹Ar
- Current limit on sensitivity at 5% of atmospheric level


Accelerator Mass Spectrometry (AMS)

- Requires special Electron Cyclotron Resonance (ECR) ion source to create positive ions in multiple (7+,8+) ionization states
- Combination of ECR source and ATLAS linear accelerator unique facility at Argonne National Labs
- In 2002 campaign, reached a sensitivity for ³⁹Ar/Ar equivalent to 5% of atmospheric level
- Most flexible tool: measurement requires few ml of STP argon

ATLAS at Argonne National Labs

AMS: 2002 Test

Sensitivity limited by presence of ³⁹K background from ion source walls, intrinsic to aluminum

AMS: 2007 Test

- I week run in June 2007, ECR source upgraded with addition of high purity aluminum liner
- Reduction of K background by factor 13
- Sensitivity potentially increased to 0.5% of atmospheric level
- Next step:
 - request of additional 2 weeks of time
 - measurement of large pool of samples at 0.5% atm. level

Counting in Liquid-phase detectors

- WARP 3.2-kg reached accuracy of 10% of atmospheric level
- Specially designed low background detector with 10-kg mass could reach below 0.1% of atmospheric level
- Requires first large batch of argon from underground reservoir

Sample Preparation

- Challenge: Ar in subsurface gases typically at few hundred ppm concentration. Needs large quantities with purity >50%
- I+yr R&D program in Princeton run by graduate student Ben Loer, senior Daniel Marks, freshman Daniel Acosta-Kane
- Resulted in construction of two stages separation plant, deployable on the field
- Chromatographic plant removes strongly adsorbing components (methane, ethane, heavy hydrocarbons, nitrogen, carbon dioxyde)
- Cold trap removes helium, hydrogen
- Achieves production of argon samples with purity exceeding 80%

Discovery of low ³⁹Ar from underground reservoirs

	Count Rate [µBq]
Underground Ar	2036±43
³⁹ Ar-Depleted Reference	2035±49
Atmospheric Ar	3625±77
(Under. Ar) - (Ref.)	1±65
(Atm. Ar) - (Ref.)	1589±91
(³⁹ Ar/Ar) _{und} /(³⁹ Ar/Ar) _{atm}	0.00 ±0.05

Submitted to Phys. Rev. Lett. Aug 30 2007

- Discovery of underground reservoir with argon low in radioactive ³⁹Ar! Depletion factor at least 20 relative to atmospheric argon.
- No ³⁹Ar detection, represents only upper limit. Motivates development of new, more sensitive techniques
- Reservoir able to supply argon target for multi-ton WIMP/neutrino detector.
- Collaboration developing with industry infrastructure for massive collection and underground storage of depleted argon

WARP Update Cryostat for 140-kg detector in Hall B, assembly started Operating 2008